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Abstract

We study efficiency and fairness properties of the equal cost sharing with maximal participation (ECSMP) 
mechanism in the provision of a binary and excludable public good. According to the maximal welfare loss 
criterion, the ECSMP is optimal within the class of strategyproof, individually rational and no-deficit mech-
anisms only when there are two agents. In general the ECSMP mechanism is not optimal: we provide a class 
of mechanisms obtained by symmetric perturbations of ECSMP with strictly lower maximal welfare loss. 
We show that if one of two possible fairness conditions is additionally imposed, the ECSMP mechanism 
becomes optimal.
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1. Introduction

An excludable and non-rivalrous binary public good is a good that can be used by several 
agents in a group, with the possibility of excluding some agents from its consumption. However, 
once an agent gains access to the public good his valuation is independent of who else has access 
to it.1 A group of agents, each privately informed about his valuation of the good, has to jointly 
decide on its provisioning. The good costs a fixed amount to produce independent of the number 
of users. Two decisions have to be made: (i) the set of users if the public good is provided, and 
(ii) the list of agents’ contributions (or individual prices).

An example of the kind of problem we have in mind is the provision of online classes. Sup-
pose a world-famous scientist considers offering a course involving several online lectures. The 
lectures would be recorded and students would be able to follow them at any time and any place. 
Of course, one would first need to enroll by paying a price to be able to virtually attend these lec-
tures, which takes the form of, say, visiting a website and entering an individualized password. In 
this sense exclusion is feasible and, perhaps more importantly, implementable. As importantly, 
an enrolled student’s value does not depend on who else has access to the lectures, hence there 
are no allocation externalities. In other words, following the lectures does not entail rivalry in 
consumption. Teaching takes time and its cost on the lecturer would typically depend on the size 
of his class in a lecture hall. But in the online context the time value of the lecturer would be 
independent of who he is virtually addressing, as all he would have to do would be to lecture 
in front of a camera. Hence his compensation could reasonably be designed independent of the 
users of the service he provides. Now (i) who among the grand set of potential students should 
have access to these online lectures, and (ii) how should they share the compensation of the 
lecturer?

These decisions will typically depend on agents’ valuations; however, since these are private 
information they have to be elicited from the agents. In other words, the mechanism that maps 
profiles of valuations into allocations or decisions must be incentive compatible. We impose the 
requirement of strategyproofness that guarantees that no agent can gain by misrepresenting his 
true valuation irrespective of his beliefs about the valuations of other agents. A second basic re-
quirement is that the mechanism be individually rational, i.e. an agent who is a user cannot be 
charged more than his valuation while a non-user cannot make a positive payment. This require-
ment ensures that all agents participate voluntarily in the decision-making process. Finally, we 
shall require that there be no-deficit, i.e. agents’ contributions should cover the cost of provision-
ing the public good.

A simple and attractive mechanism that can be used to provide a binary and excludable pub-
lic good is the equal cost sharing with maximal participation (ECSMP) mechanism. It can be 

1 For instance, Deb and Razzolini [1,2], Dobzinski et al. [3], Moulin and Shenker [9], Mutuswami [10,11], Ohseto
[13,14], Olszewski [15], and Yu [21].
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implemented by auction-like indirect mechanisms.2 At every profile of valuations, the ECSMP 
mechanism selects the allocation that maximizes (in the set-inclusion sense) the group of users 
subject to the following requirements: (i) each user’s contribution is the cost of provision di-
vided by the number of users, (ii) this contribution is no greater than his valuation, and (iii) all 
non-users pay zero. It is easy to verify that this mechanism is well-defined at every profile and 
satisfies strategyproofness, individual rationality and no-deficit.

It is well-known that strategyproofness, individual rationality and no-deficit are incompati-
ble with efficiency. Since there is no rivalry in consumption, excluding an agent with a strictly 
positive valuation is not efficient when aggregate valuation is above cost. Since individual ra-
tionality requires that the contribution paid by each agent is not larger than his valuation of 
the public good, agents will have incentives to misreport their own valuation in order to lower 
their contribution. As a way out one could reduce prices, possibly all the way to zero. But then 
one would violate the requirement of no-deficit. In view of this incompatibility, a second-best 
approach is increasingly being adopted in the literature on mechanism design. This approach 
identifies a mechanism that minimizes the maximal welfare loss in the class of all strategyproof 
and individually rational mechanisms.3

The welfare loss of a mechanism at a profile of valuations is the difference between the aggre-
gate welfare of the first-best and the aggregate welfare of the mechanism evaluated at the profile. 
The maximal welfare loss of a mechanism is the largest welfare loss, taken over all profiles of 
valuations. Then, each mechanism is evaluated according to its maximal welfare loss and the 
goal is to select a mechanism that minimizes it. Since we are interested in mechanisms satisfying 
individual rationality, it turns out that inefficiencies arise from the exclusion (as users) of some 
(or all) agents who have strictly positive valuations. The maximal welfare loss of a mechanism 
is then the sum of the valuations of all non-users of the good at the preference profile which 
maximizes this sum.

We show that when there are two agents, the ECSMP mechanism minimizes maximal welfare 
loss in the class of all strategyproof, individually rational and no-deficit mechanisms. However, 
this result does not hold in general: we construct mechanisms which outperform ECSMP in terms 
of maximal welfare loss. These mechanisms fail certain fairness properties, which are inherent 
in ECSMP. We identify two such properties which we call weak demand monotonicity and weak 
envyfreeness. When there are more than two agents, these two properties come into conflict with 
our second-best notion of efficiency. In the class of all strategy-proof, individually rational and 
no-deficit mechanisms which satisfy weak demand monotonicity or weak envyfreeness, we show 
that the ECSMP mechanism minimizes maximal welfare loss. Thus, if one wants to improve 
upon the level of “efficiency” generated by the ECSMP mechanism, one has to give up on these 
notions of fairness.

We say that a mechanism violates weak envyfreeness if there is a profile of valuations where 
an agent with a lower valuation of the good is a user at the cost of the exclusion of an agent 
with a higher valuation. This condition is a weak notion of fairness in the sense that it is implied 

2 See Deb and Razzolini [1,2].
3 The worst-case welfare objective function is a well-established and widely-used criterion. For applications in related 

areas, see Moulin and Shenker [9], Moulin [8], and Juarez [4,5] in the context of public good provision. See also Kout-
soupias and Papadimitriou [7], Roughgarden [16], and Roughgarden and Tardos [17] in the computer science literature 
on the price of anarchy, introduced to measure the effects of selfish routing in a congested network.
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by the standard conditions of envyfreeness4 or free entry.5 Weak demand monotonicity requires 
that when the valuation of all agents (weakly) increases for the public good, the set of users 
should not lose any member. This notion of fairness is implied by demand monotonicity.6 These 
implications are discussed in Section 5.

2. Literature review

Our paper complements the closely related paper of Dobzinski et al. [3]. They show that the 
ECSMP mechanism is a maximal-welfare-loss minimizer in the class of mechanisms that are 
strategyproof, budget balanced and that satisfy an axiom called equal treatment. The authors 
write: “An interesting research problem is to characterize the class of mechanisms obtained by 
dropping the (admittedly strong) equal treatment condition.” We do not offer such a characteri-
zation because we do not claim that the ECSMP mechanism is the unique maximal-welfare-loss 
minimizer. However as mentioned earlier, in the two agent case, we show that the ECSMP 
mechanism is a maximal-welfare-loss minimizer in the larger class of mechanisms when the 
equal treatment axiom is dropped and budget-balancedness is relaxed to the no-deficit condi-
tion.

For more than two agents, the example that we provide shows that the result in Dobzinski et 
al. [3] does not hold when budget balancedness is relaxed to the no-deficit condition (but equal 
treatment is maintained). The Dobzinski et al. [3] result is important because budget balanced-
ness implies a certain notion of efficiency. Surpluses generate wastage when valuable resources 
are not made use of. If however, surpluses can be committed to other uses or agents (not un-
der consideration), then budget balancedness may seem to be a strong restriction. On the other 
hand, under our fairness criteria, the budget balanced ECSMP mechanism is indeed a maximal-
welfare-loss minimizer.

Another related paper is Moulin and Shenker [9]. They consider the provision of a binary, 
excludable public good when the cost function is a submodular function of the set of users. 
They show that the mechanism associated with the Shapley value cost sharing formula (which 
corresponds to the ECSMP mechanism for the case of a binary public good with fixed cost of 
provision) is the unique mechanism that minimizes maximum welfare loss in the class of mecha-
nisms that are defined from a cross monotonic cost sharing method and are group strategyproof, 
individually rational, non-subsidizing (the cost shares are non negative), budget balanced, and 
that satisfy consumer sovereignty. Cross monotonicity requires the price paid by a user to weakly 
decrease when the set of users expands.7 Group strategyproofness is an incentive compatibility 
requirement when coalitions of agents are allowed to coordinate messages for mutual benefit. 
Consumer sovereignty ensures that every agent has a valuation that guarantees his participation 
irrespective of the valuations of other agents. Thus our result applies to a more specialized setting 
than that in Moulin and Shenker [9] but establishes the optimality of the ECSMP mechanism 
amongst a much broader class of mechanisms. We also note that strategyproofness is a more 
compelling axiom than group strategyproofness from a decision-theoretic perspective. If agents 
are ignorant of the valuations of other agents, assumptions about the ability of coalitions to coor-

4 See, for example, Sprumont [18].
5 See, for example, Deb and Razzolini [1,2].
6 See, for example, Ohseto [13] and Deb and Razzolini [1,2].
7 Cross monotonicity is related to the axiom of population monotonicity introduced and analyzed in Thomson [19,20].
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dinate their messages for mutual benefit require stronger justification. Group strategyproofness 
can also be a demanding requirement in this setting (see Juarez [5] and [6]).

3. Model

A binary and excludable public good is to be provided to a club of agents. The grand set of 
agents is N = {1, ..., n} and a club is a possibly empty subset of N . If the good is provided to 
no agent, i.e., if the club is empty, no cost is incurred. Providing the good to any nonempty club 
generates a cost of 1, regardless of the size or the membership structure of the club.

Each agent i ∈ N has a type ti which gives his value for being in a club. We assume that ti
can take on any nonnegative value, in other words, the type space is Ti = �+. A type profile is 
a vector t ∈ �n+, and is flexibly denoted t = (ti , t−i ) for any i, where t−i is a list of the types of 
all agents except for i. Agents’ payoffs are quasilinear in money and there are no informational 
or allocative externalities. Hence i’s payoff is determined by his own type and payment only. In 
particular it does not depend on who else might be included in the club. To be precise, suppose 
that club S is formed, i’s type is ti and his payment is pi . Then his payoff is Ii(S)ti − pi where 
Ii(S) is the indicator function, i.e., Ii(S) = 1 if i ∈ S and Ii(S) = 0 otherwise.

A mechanism is a function m = (S, p) : �n+ → 2N ×�n, which, for every type profile t ∈ �n+, 
determines a (possibly empty) club S(t), and a payment pi(t) for every agent i ∈ N . Note that 
agents inside or outside the club could be making or receiving payments.

We are interested in a domain of mechanisms which satisfy three basic requirements: strate-
gyproofness, individual rationality and no-deficit.

Definition 1. A mechanism m = (S, p) is admissible if it satisfies the following three conditions.

1. Strategyproofness (SP): for every i, t = (ti , t−i ) and t ′i , Ii(S(t))ti −pi(t) ≥ Ii(S(t ′i , t−i ))ti −
pi(t

′
i , t−i ).

2. Individual Rationality (IR): for every i and t , Ii(S(t))ti − pi(t) ≥ 0.
3. No-deficit (ND): for every t , 

∑
i∈N pi(t) ≥ 1 whenever S(t) �= ∅, and 

∑
i∈N pi(t) ≥ 0 oth-

erwise.

Let Φ be the class of admissible mechanisms. Notice that our conditions are all ex post, 
eliminating the need to include a prior on the joint type space in the model. Strategyproofness 
says that it is a weakly dominant strategy for the agent to report his true type in the revelation 
game induced by the mechanism. Individual rationality says that at every type profile each agent 
receives at least his type-independent payoff from an outside option, which we normalize to 
zero. Finally no-deficit says that at every type profile the cost of the club is covered by agents’ 
payments.

We next give without proof a classical result on the characterization of strategyproof and 
individually rational mechanisms (see Myerson [12] for example).

Proposition 1. A mechanism m = (S, p) is strategyproof and individually rational if and only if 
for every i ∈ N , there exist functions φi : �n−1+ → �+ ∪ {∞} and hi : �n−1+ → �+ such that for 
every t = (ti , t−i )

1. if ti > φi(t−i ), then i ∈ S(t) and pi(t) = φi(t−i ) − hi(t−i ),
2. if ti < φi(t−i ), then i /∈ S(t) and pi(t) = −hi(t−i ),
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3. if ti = φi(t−i ), then either [i ∈ S(t) and pi(t) = φi(t−i ) − hi(t−i )] or [i /∈ S(t) and pi(t) =
−hi(t−i )].

Thus if m is strategyproof, then whether i will belong to the club at a type profile or not 
depends on how his type compares to a cutoff φi(t−i ) determined by other agents’ types. If his 
type is above the cutoff, then i belongs to the club. Furthermore his payment is the difference 
between his cutoff and an amount hi(t−i ) which, again, is only dependent on others’ types. If 
his type is below the cutoff, then he does not belong to the club and his payment is the negative 
of hi(t−i ). If, on the other hand, a mechanism m is generated by functions {φi, hi}i=1,...,n with 
these features, then it is strategyproof. Furthermore a strategyproof mechanism m is individually 
rational if and only if the functions hi are all nonnegative valued. In this paper, we will always 
break the tie in case 3 of Proposition 1 in favor of including the agent in the club. None of our 
results depend on this restriction.

The no-deficit requirement in our notion of admissible mechanisms imposes a nontrivial con-
dition on the cutoffs and lump sum amounts associated with a strategyproof and individually 
rational mechanism. A mechanism m is admissible according to Definition 1 if and only if, at 
every t ,

S(t) �=∅ implies
∑

i∈S(t)

φi(t−i ) −
∑
i∈N

hi(t−i ) ≥ 1, and

S(t) =∅ implies hi(t−i ) = 0 for all i ∈ N

where the functions {φi, hi}i=1,...,n generate m as in Proposition 1. Note that an admissible mech-
anism necessarily balances the budget whenever it forms the empty club: pi(t) = −hi(t−i ) = 0
for all i. To the best of our knowledge, there is no tractable characterization of the class Φ of 
admissible mechanisms. We view this as the main difficulty in front of mechanism design in our 
environment.

Maximal welfare loss efficiency. The classical notion of efficiency dictates in our model that a 
mechanism should either include all in the club, or else, exclude all from the club. More precisely, 
m is efficient if S(t) = N whenever 

∑
i∈N ti ≥ 1, and S(t) =∅ otherwise. Hence under efficiency 

the public good is essentially non-excludable. This stems from the fact that once the club has 
some member, the marginal net benefit of including another is nonnegative.

Unfortunately this notion of efficiency is incompatible with the properties that admissible 
mechanisms have to satisfy. In other words, there is no m ∈ Φ which is efficient. Even though 
this is a well-known result, let us review the argument as it applies in our environment for the 
special case of two agents.

We will concentrate on three type vectors, (1, 0), (0, 1) and (1, 1). Suppose that m is ad-
missible and efficient. Then S(1, 0) = S(0, 1) = S(1, 1) = {1, 2} by efficiency. Furthermore 
p2(1, 0) = p1(0, 1) = 0 by IR. Now SP gives p2(1, 1) = p1(1, 1) = 0 as well, leading to a bud-
get deficit at (1, 1) and hence to a contradiction with the assumption that m is an admissible 
mechanism.8

8 According to our definition of efficiency the grand club must be formed at type vectors (1, 0) and (0, 1), although the 
empty club would have induced the same total welfare of zero. However the argument would still work if we replaced 
(1, 0) and (0, 1) with (1, ε) and (ε, 1) where ε is a small positive number.
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Given this impossibility, the literature has turned to relaxing either the requirements that ad-
missible mechanisms have to satisfy and/or efficiency. Of our interest is a relaxation of efficiency 
called maximal welfare loss efficiency. In order to define this notion, we need some preparations.

First-best welfare at a type profile t , which we will denote WFB(t), is the total welfare in the 
society achievable under complete information. Hence

WFB(t) = max
{∑

i∈N

ti − 1,0
}
.

First-best welfare serves as the benchmark to evaluate the performance of a mechanism under 
incomplete information. For any m = (S, p) ∈ Φ and any type profile t , let Wm(t) be the welfare 
generated by m at t , i.e.,

Wm(t) =
∑

i∈S(t)

ti −
∑
i∈N

pi(t).

Now let

WLm(t) = WFB(t) − Wm(t).

Thus WLm(t) is the welfare loss of m at t in comparison to the first-best. Finally let MWLm

denote the maximal welfare loss (MWL) of m taken over all type profiles, i.e.,

MWLm = sup
t∈�n+

WLm(t).

Our mechanism designer will evaluate each mechanism m on the basis of its maximal welfare 
loss MWLm and will be interested in employing a mechanism whose maximal welfare loss is 
minimal.

Definition 2. For any subset Φ0 ⊆ Φ , we will say that m∗ is maximal welfare loss efficient in Φ0
if

m∗ ∈ arg min
m∈Φ0

MWLm.

In what follows, we will investigate a particular mechanism, the equal cost sharing with max-
imal participation mechanism, with respect to its maximal welfare loss.

4. Equal cost sharing with maximal participation

We begin by defining the equal cost sharing with maximal participation (ECSMP) mechanism, 
which will be the main focus of our paper. For any set S ⊆ N , let #S denote the cardinality of S.

Definition 3. The equal cost sharing with maximal participation (ECSMP) mechanism mE =
(SE, pE) is defined as follows: for every t

SE(t) =
⋃{

S ⊆ N\{∅} : for all i ∈ S, ti ≥ 1

#S

}

pE
i (t) =

{
1

#SE(t)
if i ∈ SE(t),

0 otherwise.
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The mechanism mE forms the largest club whose members can individually rationally and 
equally share cost. Indeed, for every t , ti ≥ 1/#SE(t) for all i ∈ SE(t), in other words, the set 
{S ⊆ N : for all i ∈ S, ti ≥ 1/#S} of clubs is closed under the union operation. To see this, take 
two clubs T and T ′ in {S ⊆ N : for all i ∈ S, ti ≥ 1/#S}. Note that for all i ∈ T ∪ T ′, either 
ti ≥ 1/#T ≥ 1/#(T ∪ T ′) or ti ≥ 1/#T ′ ≥ 1/#(T ∪ T ′).

Clearly mE ∈ Φ .9 Note that mE is in particular budget-balanced, i.e., the sum of agents’ 
contributions exactly cover the cost of the club. Furthermore mE has the following anonymity
property: the associated cutoff functions and their arguments are independent of the names of the 
agents. If there are three agents, for example,

φE
1 (x, y) = φE

2 (x, y) = φE
3 (x, y) = φE

3 (y, x).

To proceed, we will calculate the maximal welfare loss of mE .

Lemma 1. The maximal welfare loss of the ECSMP mechanism is MWLE = ∑n
k=2 1/k.

Proof. We will first show that WLE(t) <
∑n

k=2 1/k. If 
∑

i∈N ti < 1, then WFB(t) = WE(t) = 0
giving WLE(t) = 0 as well. So take any t such that 

∑
i∈N ti ≥ 1 so that WFB(t) = ∑

i∈N ti − 1. 
There are two cases. If SE(t) = N , then WE(t) = ∑

i∈N ti − 1 = WFB(t) and WLE(t) = 0. If 
#SE(t) = n0 ∈ {0, 1, ..., n − 1}, then let (t(1), t(2), ..., t(n−n0)) be a listing of the types of agents 
in N\SE(t) from highest to lowest, with ties broken arbitrarily. We claim that t(k) < 1

n0+k
for 

every k = 1, ..., n − n0. If not, let k′ be the largest k ∈ {1, ..., n − n0} such that t(k) ≥ 1
n0+k

. It 

follows that t(k) ≥ 1
n0+k′ for all k ≤ k′ and SE(t) should have had n0 + k′ instead of n0 members, 

a contradiction. Hence

WLE(t) =
∑

i /∈SE(t)

ti =
n−n0∑
k=1

t(k) <

n−n0∑
k=1

1/(n0 + k) ≤
n∑

k=2

1/k

giving WLE(t) <
∑n

k=2 1/k as we wanted to show.
Hence for all t , WLE(t) <

∑n
k=2 1/k and consequently MWLE ≤ ∑n

k=2 1/k. To finish, we 
establish the reverse inequality by taking a sequence of type vectors at which mE generates 
welfare losses converging to 

∑n
k=2 1/k. For all sufficiently small ε > 0, let t ε = (1 − ε, 1/2 − ε,

..., 1/n − ε). Note SE(tε) = ∅ and if 
∑

i∈N tεi ≥ 1, which happens if ε is small enough, then 
WLE(tε) = ∑

i∈N tεi − 1 = ∑n
k=2 1/k − nε. Now as ε ↓ 0, WLE(tε) → ∑n

k=2 1/k, indicating 
that MWLE = supt ′ WLE(t ′) ≥ ∑n

k=2 1/k. �
We will now show that when there are only two agents, there is no admissible mechanism in 

Φ whose MWL is less than that of mE .

Proposition 2. The ECSMP mechanism mE is maximal welfare loss efficient in Φ if N = {1, 2}.

Proof. By Lemma 1, MWLE = 1/2. Suppose MWLm < 1/2 for some m = (S, p) ∈ Φ . We first 
claim that for all sufficiently small ε > 0, we must have S(1 − ε, 1/2 − ε) �= ∅. Otherwise 

9 Strategyproofness of mE follows because the following monotonicity property is satisfied: if i ∈ SE(ti , t−i ) and 
ti < t ′ , then i ∈ SE(t ′, t−i ).
i i
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Wm(1 −ε, 1/2 −ε) = 0 and WLm(1 −ε, 1/2 −ε) = 1/2 −2ε giving MWLm ≥ limε↓0 WLm(1 −ε,

1/2 − ε) = 1/2, a contradiction. Similarly we must also have S(1/2 − ε, 1 − ε) �= ∅ for all 
sufficiently small ε > 0. Fix such ε. It follows that S(1 − ε, 1/2 − ε) = S(1/2 − ε, 1 − ε) = {1, 2}
as neither individual alone could individually rationally cover the cost of a nonempty club at 
these type profiles. Now SP and IR imply

S(1 − ε,1 − ε) = {1,2}
p1(1 − ε,1 − ε) = p1(1/2 − ε,1 − ε) ≤ 1/2 − ε and

p2(1 − ε,1 − ε) = p2(1 − ε,1/2 − ε) ≤ 1/2 − ε,

leading to a budget deficit at the type vector (1 − ε, 1 − ε). Hence (S, p) could not have been 
admissible. �

Remark 1. The ECSMP is not the unique admissible mechanism that is maximal welfare loss 
efficient. Consider a mechanism where the cutoffs are symmetric and given by φi(tj ) = 1 + ε −
2εtj for tj ≤ 1/2, and φi(tj ) = 1/2 otherwise, with payments equal exactly to cutoffs. If ε is 
small enough, this mechanism has the same MWL as the ECSMP mechanism, i.e., 1/2.

It turns out, however, that when N contains three agents or more, mE is no longer maximal 
welfare loss efficient in Φ . To establish this, we will later present an example of an admissible 
mechanism which is MWL superior to mE . We will first show, however, that there exist interest-
ing subsets of Φ where mE is MWL efficient even with n > 2 agents. To this end, we introduce 
two distinct and arguably rather weak notions of fairness.

Definition 4. A mechanism m = (S, p) satisfies weak demand monotonicity (wDM) if S(t) ⊆
S(t ′) whenever ti ≤ t ′i for all i ∈ N .

Definition 5. A mechanism m = (S, p) satisfies weak envyfreeness (wEF) if for every i, j and t , 
i ∈ S(t) whenever j ∈ S(t) and ti > tj .

Note that neither condition has an imposition on how payments are determined. In a discussion 
section to follow, we will argue that these two conditions are independent and that they are 
weaker than the demand monotonicity, free entry and envy-freeness conditions that appear in the 
literature. Let ΦwDM and ΦwEF denote the classes of admissible mechanisms satisfying wDM 
and wEF respectively. It is clear that mE ∈ ΦwDM ∩ ΦwEF .

Proposition 3. The ECSMP mechanism is maximal welfare loss efficient in ΦwDM ∪ ΦwEF.

Proof. We will prove this result here for the special case when N = {1, 2, 3}. The argument 
extends to n > 3 agents at the cost of some investment in notation as we show in Appendix A. 
By Lemma 1, MWLE = 5/6.

We first claim that if MWLm < 5/6, then, for ε > 0 small enough, m forms a nonempty club 
at the type profiles (1 − ε, 1/2 − ε, 1/3 − ε) and (1/2 − ε, 1 − ε, 1/3 − ε). If not, the welfare 
loss of m at these profiles would be 5/6 − 3ε, and taking the limit as ε falls to zero would give 
MWLm ≥ 5/6, a contradiction.
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Now suppose m = (S, p) satisfies SP, IR and ND, and that MWLm < 5/6, and fix a sufficiently 
small ε > 0 such that S(1 −ε, 1/2 −ε, 1/3 −ε) and S(1/2 −ε, 1 −ε, 1/3 −ε) are both nonempty.

Weak demand monotonicity. Suppose that m satisfies wDM as well. We claim that 3 ∈ S(1 −ε,

1 − ε, 1/3 − ε). To see this, first note that, by the observation above, m forms nonempty clubs at 
the type profiles (1 − ε, 1/2 − ε, 1/3 − ε) and (1/2 − ε, 1 − ε, 1/3 − ε). If 3 belongs to either of 
these clubs, then 3 ∈ S(1 − ε, 1 − ε, 1/3 − ε) as well by wDM. If not, then,

S(1 − ε,1/2 − ε,1/3 − ε) = {1,2} = S(1/2 − ε,1 − ε,1/3 − ε)

by ND and IR. Now SP and IR give

{1,2} ⊆ S(1 − ε,1 − ε,1/3 − ε),

p1(1 − ε,1 − ε,1/3 − ε) = p1(1/2 − ε,1 − ε,1/3 − ε) < 1/2, and

p2(1 − ε,1 − ε,1/3 − ε) = p2(1 − ε,1/2 − ε,1/3 − ε) < 1/2.

Hence 3 ∈ S(1 − ε, 1 − ε, 1/3 − ε) so that no-deficit obtains, as we wanted to show. Now the 
same reasoning applies and 1 ∈ S(1/3 − ε, 1 − ε, 1 − ε) and 2 ∈ (1 − ε, 1/3 − ε, 1 − ε). Using 
SP and IR once again we conclude that S(1 − ε, 1 − ε, 1 − ε) = {1, 2, 3} but no agent makes a 
payment larger than 1/3 − ε at this type profile. This leads to a budget deficit, and therefore, to a 
contradiction. Hence m cannot satisfy wDM.

Weak envy freeness. Suppose now that m satisfies wEF. Then 1 ∈ S(1/2 − ε, 1 − ε, 1/3 − ε)

since otherwise S(1/2 −ε, 1 −ε, 1/3 −ε) = {2, 3} and wEF fails. Similarly 2 ∈ S(1 −ε, 1/2 −ε,

1/3 − ε). Consequently

{1,2} ⊆ S(1 − ε,1 − ε,1/3 − ε),

p1(1 − ε,1 − ε,1/3 − ε) = p1(1/2 − ε,1 − ε,1/3 − ε) < 1/2, and

p2(1 − ε,1 − ε,1/3 − ε) = p2(1 − ε,1/2 − ε,1/3 − ε) < 1/2.

Thus we must have, as in the case of wDM, 3 ∈ S(1 − ε, 1 − ε, 1/3 − ε) to avoid a budget deficit. 
Same reasoning applies in getting 1 ∈ S(1/3 − ε, 1 − ε, 1 − ε) and 2 ∈ (1 − ε, 1/3 − ε, 1 − ε). 
Consequently, by SP and IR, S(1 − ε, 1 − ε, 1 − ε) = {1, 2, 3}, with pi(1 − ε, 1 − ε, 1 − ε) < 1/3
for all i, and m fails ND. �

It is instructive to juxtapose the proofs of Propositions 2 and 3 in order to understand the 
complications that arise with three or more agents. Both proofs rely on exploiting the behavior 
of mechanisms at hand at certain critical type profiles. For small enough ε > 0, take the profile 
(1 − ε, 1/2 − ε) in the two-agent case, and the profile (1 − ε, 1/2 − ε, 1/3 − ε) in the three-agent 
case. To beat mE in MWL, an alternate mechanism must form nonempty clubs at these profiles. 
Now in the former scenario, this nonempty club is necessarily the grand coalition {1, 2}. In the 
latter, however, the nonempty club is either the grand coalition {1, 2, 3}, or one of the doubletons 
{1, 2} and {1, 3}. It is precisely this multiplicity of possible clubs at critical profiles that creates 
the complications with three or more agents. We need, in order to attain a budget deficit at the 
profile (1 − ε, 1 − ε, 1 − ε), that at every permutation of the profile (1 − ε, 1 − ε, 1/3 − ε) the 
agent whose type is 1/3 − ε should belong to the club formed. Unfortunately, admissibility of a 
mechanism alone may fail to lead to this conclusion as our Example 1 below shows. As a result 
we need wEF or wDM for the argument to work.
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In order to show that Proposition 3 is tight, in other words, to show that a failure of wDM 
and wEF leads to the suboptimality of mE , we will next present a class of admissible mecha-
nisms obtained from small perturbations of mE . In doing so we will make use of the anonymity 
property, which is also satisfied by the perturbations by construction.

Example 1. Suppose N = {1, 2, 3} and take ε ∈ (0, 1/24). Consider the following perturbation 
of the ECSMP mechanism mE , which we call mε and present together with mE for comparison 
purposes. Both mE and mε are anonymous and the diagrams give the cutoffs, denoted φk and φε

k

respectively, of some k ∈ N as a function of (ti, tj ) where i, j and k are distinct agents in N .

In both diagrams the arguments of φk and φε
k are omitted to economize on space. For both 

mechanisms, at any vector (ti, tj ) which lies at the border of two or more distinct regions, the 
effective cutoff is the smallest one. At (ti , tj ) = (1/3, 1/2) for example, mE imposes a cutoff 
of 1/3 on agent k. Similarly at (ti, tj ) = (2/3 + ε, 1/2), mε imposes the cutoff 1/3 − ε on k. 
Both mechanisms charge each member of any nonempty club exactly his cutoff. Hence their hi

functions are zero-valued.
We would like to point out various features of the mechanism mε in Example 1.

1. Generated by symmetric cutoff functions as given in the plot, mε satisfies SP. Furthermore 
since the associated hi functions are zero-valued, IR obtains and members of any club pay 
their cutoffs. In Appendix B, we exhibit how mε behaves in detail by partitioning �3+ into 6 
distinct sets of type vectors and analyzing them individually.

2. As ε vanishes, the mechanism mε converges (pointwise) to mE . Hence we interpret mε to 
be a perturbation of mE .

3. In order to calculate the maximal welfare loss MWLε of mε , take the type vectors (1/3 − ε,

1/2, 1) and (1/3 + 2ε, 1/3 + 2ε, 1) or any one of their permutations. At type vectors 
sufficiently close to these vectors from below—as represented by dots in the diagram—
we will now show that mε forms the empty club. Let us verify this leisurely. First take 
(1/3 − ε, 1/2, 1) and a sufficiently small δ > 0. Omitting subscripts note that the cutoffs 
imposed by mε are
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φε(1/3 − ε − δ,1/2 − δ) = 1,

φε(1/3 − ε − δ,1 − δ) = 1/2, and

φε(1/2 − δ,1 − δ) = 1/3 − ε.

Hence if t is sufficiently close to (1/3 − ε, 1/2, 1) from below, then S(t) = ∅, causing a 
welfare loss of 5/6 − ε.
Similarly if we take (1/3 + 2ε, 1/3 + 2ε, 1) and a small δ > 0, we get

φε(1/3 + 2ε − δ,1/3 + 2ε − δ) = 1,

φε(1/3 + 2ε − δ,1 − δ) = 1/2.

Note that as ε < 1/24, 1/3 + 2ε < 1/2. Hence at type vectors sufficiently close to (1/3 +
2ε, 1/3 + 2ε, 1) from below, no agent meets his cutoff and the empty club is formed. The 
associated welfare loss this time is 2/3 + 4ε < 5/6 as ε < 1/24. In either case MWLε <

MWLE . Appendix B demonstrates in detail the calculation of MWLε .
4. An interesting question is to identify that ε for which MWLε is the lowest among {mε : 0 <

ε < 1/24}. This obtains by equating the two candidates for MWLε above: 5/6 −ε = 2/3 +4ε, 
which gives ε = 1/30. In other words

inf
0<ε<1/24

MWLε = MWL1/30 = 4

5
.

5. Our perturbation mε fails both wDM and wEF. For example, mε forms the club {2, 3} at the 
type profile (1/3 + 2ε, 2/3 + ε, 1/3). However, when all types are larger at (1, 1, 1/3 + ε), 
mε excludes 3 and forms the club {1, 2}. This is a failure of wDM. Furthermore, the fact that 
agent 1 does not belong to the club {2, 3} at (1/3 + 2ε, 2/3 + ε, 1/3) even though t1 > t3
is a failure of wEF. This was of course to be expected because of Proposition 3 above: any 
mechanism which satisfies wDM or wEF cannot possibly be superior to mE in MWL.

6. We would like to re-emphasize that mε is by construction anonymous: for every i, t and 
permutation π on {1, 2, 3},

mε
i (t1, t2, t3) = mε

π(i)(tπ(1), tπ(2), tπ(3)).

Let ΦA be the class of anonymous and admissible mechanisms. Thus the ECSMP mecha-
nism mE is not MWL efficient in ΦA as mε ∈ ΦA. This notion of anonymity is, of course, 
stronger than anonymity in utility terms, which appears in Sprumont [18]. It appears in 
Dobzinski et al. [3] where it is called equal treatment.

7. As opposed to the equal sharing mechanism mE , its perturbation mε is not budget balanced. 
However the budget surplus induced by mε is at most 6ε and this is not large enough to offset 
the efficiency gain in the worst-case scenario. Details are in Appendix B.

5. Discussion

To the best of our knowledge, wDM and wEF are novel modifications of closely related (and 
stronger) conditions that appear in the literature. Note that there is no logical implication between 
our conditions. To see this suppose N = {1, 2, 3}. Suppose that S(t) = {1} if t1 ≥ 1 and S(t) =∅

otherwise, with agent 1 being charged the full cost of the club whenever he is in the club. This 
mechanism is in Φ , it satisfies wDM and fails wEF. On the other hand consider the mechanism 
given by S(t) = {i} if tj ≤ 1, tk ≤ 1 and 1 ≤ ti , with i, j and k distinct, and S(t) = ∅ otherwise. 
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Suppose that the agent in the club covers the cost of the club fully. This mechanism belongs to 
Φ , satisfies wEF but fails wDM. Thus the class ΦwDM ∪ ΦwEF on which me is MWL efficient is 
a strict superset of both ΦwDM and ΦwEF .

We note that Proposition 2 is not a corollary to Proposition 3, as there exist admissible mech-
anisms outside ΦwDM ∪ ΦwEF in 2-agent environments. As an example, consider the mechanism 
defined by S(t) =∅ if t1 < 1, S(t) = {1, 2}, p1(t) = 1 and p2(t) = 0 if 1 ≤ t1 < 2 and S(t) = {1}
and p1(t) = 1 if t1 ≥ 2.

Our wDM condition is a straightforward weakening of the demand monotonicity condition 
that appears in Ohseto [13], which requires, on top of our wDM, that S(t) = S(t ′) whenever 
ti ≤ t ′i for every i ∈ S(t) and t ′i ≤ ti for every i /∈ S(t).

Furthermore for any admissible mechanism, our wEF condition is implied by the free entry 
condition which appears in Deb and Razzolini [1,2]. A mechanism m satisfies free entry if for 
every i, j and t , i ∈ S(t) whenever j ∈ S(t) and ti > pj (t). Suppose that m is an admissible 
mechanism which satisfies free entry. If for some t , i and j , j ∈ Sm(t) and ti > tj , then ti > pm

j (t)

as well by individual rationality. Consequently i ∈ Sm(t) by free entry. This establishes that m
satisfies wEF as well.

A different condition that implies wEF is the classical notion of envyfreeness (see, for ex-
ample, Sprumont [18]). A mechanism m is envyfree if for every t , i and j , Ii(S(t))ti − pi(t) ≥
Ij (S(t))ti −pj (t). Suppose that m is an admissible mechanism. If at some type profile t , j ∈ S(t)

and i /∈ S(t) even though ti > tj , then i envies j since

Ii

(
S(t)

)
ti − pi(t) = 0

< ti − tj

≤ Ij

(
S(t)

)
ti − pj (t)

where the weak inequality follows by individual rationality. Hence if m is an envyfree and ad-
missible mechanism, it also satisfies wEF.

6. Conclusion

The ECSMP mechanism is a simple and appealing procedure with desirable incentive prop-
erties. We show in this paper that, in general, it is not maximal welfare loss efficient. Hence a 
mechanism designer with the worst-case-scenario in mind, may opt to employ a different mech-
anism, perhaps a small perturbation of ECSMP which may lead to budget surplus as we exhibit 
in Example 1. If the designer is restricted to use a mechanism with certain fairness properties (as 
embodied in our weak demand monotonicity or weak envyfreeness conditions), however, then 
ECSMP cannot be improved upon.

We leave for future work the investigation of the consequences of replacing the no-deficit 
condition in our definition of admissible mechanisms with budget balance. As we remarked 
above, our perturbation of the ECSMP mechanism which fares better in terms of maximal welfare 
loss leads to budget surpluses. Hence it may very well be that ECSMP mechanism is maximal 
welfare loss efficient within the class of admissible and budget balanced mechanisms.

We also leave for future work the ambitious question of how to solve the mechanism design 
problem

min MWLm.

m∈Φ
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We perceive the main difficulty here to be the absence of a tractable characterization of the set Φ
of strategyproof, individually rational and no-deficit mechanisms.

Appendix A. Proof of Proposition 3

Let N = {1, ..., n} where n > 3. Here we will generalize the argument presented in the main 
text for n = 3. To this end we will need to develop some notation. For any type vector t ∈ �n+, let 
P(t) be the set of all permutations of t . In other words t ′ ∈ P(t) iff there is a bijection π : N → N

such that for every i, ti = t ′π(i). Now for any ε ∈ (0, 1/n) and any k = 1, ..., n, define the type 
vector tk(ε) as follows:

tki (ε) =
{

1 − ε if i ≤ k,

1/i − ε if k < i.

Hence

t1(ε) = (1 − ε,1/2 − ε,1/3 − ε, ...,1/n − ε),

t2(ε) = (1 − ε,1 − ε,1/3 − ε, ...,1/n − ε),

· · ·
tn(ε) = (1 − ε, ...,1 − ε).

Now let

T k(ε) = P
(
tk(ε)

)
for every 1, ..., k.

Note that k also indicates the number of agents whose types are 1 − ε in every element of T k(ε). 
Furthermore if k > 1, then for every t ∈ T k(ε), there exists some t ′ ∈ T k−1(ε) such that

ti =
{

t ′i if t ′i �= 1/k − ε, and

1 − ε if t ′i = 1/k − ε.

Hence for every k > 1 and every t ∈ T k(ε), there exist k vectors t1, ..., tk ∈ T k−1(ε) such that t
is obtained by increasing the type of the agent with 1/k − ε in any one of t1, ..., tk to 1 − ε.

If ε is small enough, any mechanism which has a lower maximal welfare loss than ECSMP 
must form a nonempty club at all members of T k(ε) for every k. We record this rather straight-
forward observation next.

Lemma 2. If m = (S, p) ∈ Φ and MWLm < MWLE , then there exists ε̄ > 0 such that for every 
ε ∈ (0, ̄ε) and t ∈ ⋃n

k=1 T k(ε), S(t) �= ∅.

Proof. Take a mechanism m = (S, p) ∈ Φ with MWLm < MWLE . Recall that MWLE =∑n
i=2 1/i. By construction of the sets {T k(ε)}k=1,...,n, if t ∈ T k−1(ε) and t ′ ∈ T k(ε), then ∑n
i=1(t

′
i − ti ) = 1 − 1/k > 0 for k > 2. Consequently for any list {tk}k=1,...,n where tk ∈ T k(ε)

for every k, the number 
∑n

i=1 tki is increasing in k. Thus if S(tk) = ∅ for all k, then WLm(tn) >
· · · > WLm(t1). So it suffices to show that S(t) �= ∅ for every t ∈ T 1(ε). Suppose, towards 
a contradiction, that for every ε̄ > 0, there exists some ε ∈ (0, ̄ε) and t (ε) ∈ T 1(ε) such that 
S(t (ε)) = ∅. Then there exists a sequence {εq} ↘ 0 and a corresponding sequence of type vec-
tors tq ∈ T 1(εq) such that S(tq) = ∅ for all q . Note that such tq is a permutation of the type 
vector (1 − ε, 1/2 − ε, ..., 1/n − ε). Then WLm(tq) → ∑n

i=2 1/i, a contradiction to the hypoth-
esis MWLm <

∑n
i=2 1/i. Thus our supposition is false: there exists ε̄ > 0 such that if ε ∈ (0, ̄ε)

and t ∈ T 1(ε), S(t) �= ∅. �
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From now on we will fix such small ε ∈ (0, ̄ε) and to economize on notation we will write T k

instead of T k(ε). We will also denote by t∗ the type vector (1 − ε, ..., 1 − ε), the unique element 
of T n. Our goal is to show that if (1) m = (S, p) is strategyproof and individually rational, (2) 
MWLm <

∑n
k=2 1/k and (3) m satisfies wDM or wEF, then m runs a budget deficit at some 

t ∈ ⋃n
k=1 T k .

To begin, take a strategyproof and individually rational mechanism m = (S, p) such that 
MWLm <

∑n
k=2 1/k.

Case 1: Weak demand monotonicity Suppose that m additionally satisfies wDM. Write

T n−1 = {
t1,n−1, t2,n−1, ..., tn,n−1},

where for every k, tk,n−1
k = 1/n −ε and tk,n−1

i = 1 −ε for all i �= k. Note that the only difference 
between the type profiles tk,n−1 and t∗ is agent k’s type:

t∗i =
{

t
k,n−1
i if i �= k, and

1 − ε > t
k,n−1
k if i = k.

This observation has an important consequence, which we will use recursively below. Note that 
S(tk,n−1) �= ∅ by the Lemma above. Now if k ∈ S(tk,n−1), then, by SP and IR,

k ∈ S
(
t∗

)
and pk

(
t∗

) = pk

(
tk,n−1) ≤ 1/n − ε.

There are two possibilities: (1) k ∈ S(tk,n−1) for every k and m runs a budget deficit at t∗, in 
which case the proof for Case 1 is complete, or (2) k′ /∈ S(tk

′,n−1) for some k′. Suppose the latter 
case, and in particular, without loss of generality, k′ = 1.

Now consider the following subset of T n−2:

T n−2(1) = {
t ∈ T n−2 : t1 = 1/n − ε

}
.

Hence t ∈ T n−2(1) iff n − 2 agents have type 1 − ε, agent 1 has type 1/n − ε and a different
agent has type 1

n−1 − ε. Now to pin down this different agent, we write

T n−2(1) = {
t2,n−2, t3,n−2, ..., tn,n−2},

where tk,n−2
k = 1

n−1 − ε. Note that for every k > 1, t1,n−1
1 = t

k,n−2
1 = 1/n − ε and

t
1,n−1
i =

{
t
k,n−2
i if i �= k, and

1 − ε > t
k,n−2
k if i = k.

Note that since t1,n−1
i ≤ t

k,n−2
i for all i and since we supposed 1 /∈ S(t1,n−1) above, wDM implies 

1 /∈ S(tk,n−2) for any k = 2, ..., n. However S(tk,n−2) �= ∅ by the lemma. Now using the exact 
same logic of the previous paragraph, if some k ∈ S(tk,n−2), then, by SP and IR,

k ∈ S
(
t1,n−1) and pk

(
t1,n−1) = pk

(
tk,n−2) ≤ 1

n − 1
− ε.

Once again, there are two possibilities: (1) k ∈ S(t1,n−1) for all k > 1, leading to a budget deficit 
and the termination of the proof of Case 1, or (2) k′ /∈ S(tk

′,n−2) for some k′ > 1. Suppose the 
latter case and, without loss of generality, k′ = 2.
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Continuing in this fashion, suppose k /∈ S(tk,n−k) for all k = 1, ..., n − 2 and write

T 1(1,2, ..., n − 2) = {
tn−1,1, tn,1}.

Now wDM implies that agents 1, ..., n − 2 should belong to neither S(tn−1,1) nor S(tn,1). How-
ever, since a club must be formed at both type vectors, we must have

S
(
tn−1,1) = S

(
tn,1) = {n − 1, n}.

This follows because tn−1,1
n−1 = t

n,1
n = 1/2 − ε and tn−1,1

n = t
n,1
n−1 = 1 − ε. Thus at either type 

vector no agent can individually rationally finance the club alone. Hence, by SP and IR,

n − 1, n ∈ S
(
tn−2,2),

pn−1
(
tn−1,1) = pn−1

(
tn−2,2) ≤ 1/2 − ε, and

pn

(
tn,1) = pn

(
tn−2,2) ≤ 1/2 − ε.

But now to avoid a budget deficit at tn−2,2 agent n − 2 must be included in S(tn−2,2) which is 
the contradiction we need to finish the proof of Case 1.

Case 2: Weak envyfreeness Now suppose that m additionally satisfies wEF. Define for every 
k = 1, ...., n − 1 and every t ∈ T k

Nk
k (t) = {i ∈ N : ti = 1 − ε} and

Nk
k+1(t) =

{
i ∈ N : ti ≥ 1

k + 1
− ε

}
.

Note that Nk
k (t) and Nk

k+1(t) differ by a unique element, and this is the agent whose type is 
1

k+1 − ε. Call this agent i∗(t), the agent with the highest type at t which is not 1 − ε. It follows 
that

Nk
k+1(t) = Nk

k (t) ∪ {
i∗(t)

}
.

Claim. For every k = 1, ..., n − 1 and every t ∈ T k , Nk
k+1(t) ⊆ S(t).

Proof of the claim. We will use induction. Let k = 1 and take any t ∈ T 1. Since S(t) contains 
some agent, it contains the agent with type 1 − ε. In other words, N1

1 (t) ⊆ S(t). However we 
cannot have N1

1 (t) = S(t) as this would either violate IR, or lead to a budget deficit. Hence S(t)

contains other agents and one of these must be i∗(t) by wEF. Thus

N1
1 (t) ∪ {

i∗(t)
} = N1

2 (t) ⊆ S(t).

Now suppose, as induction hypothesis, that for some k ∈ {2, ..., n}, Nk−1
k (t) ⊆ S(t) for all 

t ∈ T k−1. Take any t ∈ T k . There exist, by construction of the sets T 1, ..., T n, type vectors 
t1, ..., tk ∈ T k−1 such that for every l = 1, ..., k

ti =
{

t li if i �= i∗(t l), and

1 − ε if i = i∗(t l).
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It follows that

i∗
(
t l

) ∈ Nk−1
k

(
t l

) ⊆ S
(
t l

)
.

Furthermore by SP and IR

i∗
(
t l

) ∈ S(t) and

pi∗(t l ) ≤ 1/k − ε for every l.

Note that {i∗(t l) : l = 1, ..., k} = Nk
k (t), thus Nk

k (t) ⊆ S(t). But Nk
k (t) cannot cover the cost of 

the club at t . Hence either there is budget deficit at t , or there is at least one more member in 
S(t). By wEF this member is i∗(t) and

Nk
k (t) ∪ {

i∗(t)
} = Nk

k+1(t) ⊆ S(t)

proving the claim.

To finish the proof of Proposition 2, note that we have for all t ∈ T n−1

N = Nn−1
n (t) ⊆ S(t)

where the equality is by construction of the sets Nk
k+1(t) and the set inclusion is by the 

claim. Since S(t) ⊆ N as well by definition, S(t) = N for all t ∈ T n−1. By SP and IR, there-
fore

S
(
t∗

) = N and

pi

(
t∗

) ≤ 1/n − ε for all i,

leading to a budget deficit at t∗.

Appendix B. Perturbation of ECSMP

In this appendix, we will elaborate on the family of mechanisms mε which we introduced in 
Example 1. Suppose that N = {1, 2, 3} and take ε ∈ (0, 1/24). We would like to re-emphasize 
that mε → mE pointwise as ε → 0 and that mε , just like mE , is an anonymous mecha-
nism.

We will describe mε in a series of diagrams, each corresponding to a particular interval of 
t3 values in the (t1, t2) space. Since mε is anonymous, we need only depict its behavior above 
the 45 degree line in each diagram. Below the 45 degree line, the mechanism behaves symmet-
rically, with the roles of agent 1 and 2 reversed. In every diagram, we will only indicate the 
payments made by the agents. The club that forms at any type profile is precisely the set of 
agents for whom a payment is specified in the corresponding area of a diagram. We will de-
note by Wε , WLε and MWLε , the welfare, the welfare loss and the maximal welfare loss of the 
mechanism mε .
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For 0 ≤ t3 < 1/3 − ε and 1/3 − ε ≤ t3 < 1/3 + 2ε, mε is defined as follows:

The mechanism mε behaves identical to mE when t3 < 1/3 − ε with payments pε
2 = 1 when-

ever Sε = {2}, and pε
1 = pε

2 = 1/2 whenever Sε = {1, 2}. In particular supt :t3<1/3−ε WLε(t) =
5/6 − ε, with the supremum as the limit of type vectors converging from below to (1/2, 1, 1/3 −
ε) and (1, 1/2, 1/3 − ε).

Next consider the case 1/3 − ε ≤ t3 < 1/3 + 2ε. Here pε
2 = 2/3 + ε and pε

3 = 1/3 − ε when-
ever Sε = {2, 3}. The club {2, 3} is formed in order to cover the area where mE suffers large 
welfare losses, i.e., when types are approaching from below to (1/2, 1, 1/3). At any t where 
Sε = {2, 3}, t1 ≥ 1/3 + 2ε > t3. Hence mε excludes higher type agents from clubs at the benefit 
of lower type agents, and therefore violate wEF. Furthermore, mε also violates wDM: when all 
types increase the club formed could change from {2, 3} to {1, 2} or from {1, 3} to {1, 2}. Note 
also that supt :t3∈[1/3−ε,1/3+2ε) WLε(t) = 2/3 + 4ε which falls short of MWLE = 5/6 as we took 
ε < 1/24. This supremum is the limit of welfare losses that converge (from below) to the critical 
type vector (1/3 + 2ε, 1, 1/3 + 2ε).

We move on to higher values for t3. When 1/3 + 2ε ≤ t3 < 1/2 and 1/2 ≤ t3 < 2/3 + ε, mε

is defined as follows:
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Inspecting type profiles close to (1/3 − ε, 1, 1/2) and (1/3 + 2ε, 1/2, 2/3 + ε), we find

sup
t :t3∈[1/3+2ε,2/3+ε)

WLε(t) = max{5/6 − ε,1/2 + 3ε}
< 5/6

= MWLE.

Budget surpluses begin in this range for t3. The largest surplus is 6ε which appears in the set

[1/3 + 2ε,2/3 + ε) × [1/3 + 2ε,2/3 + ε) × [1/3 + 2ε,2/3 + ε).

As we will see below these surpluses are necessary to avoid budget deficits at higher values for t3.
Further, note that clubs {1, 2} form in when 1/3 + 2ε ≤ t3 < 1/2 at type vectors where t3

exceeds t1 or t2, indicating another failure of wEF. These clubs disappear as t3 rises beyond 1/2. 
Take the club {1, 2} which forms when 1/3 − ε ≤ t1 < 1/3 + 2ε, t2 ≥ 2/3 + ε and 1/3 + 2ε ≤
t3 < 1/2 for example. As t3 increases beyond 1/2, this club disappears and in its stead, {2, 3}
forms. These are violations of wDM which are analogous to those that occur for lower values 
of t3, with the names of the agents interchanged.

Finally, for t3 ≥ 2/3 + ε, mε is defined as follows:

The unique difference between the two diagrams is that for t3 < 1 the empty club is formed at 
low values of (t1, t2) whereas when t3 ≥ 1, the singleton club {3} forms at corresponding values 
of (t1, t2). Note that

sup
t :2/3+ε≤t3<1

WLε(t) = max{5/6 − ε,2/3 + 4ε} < 5/6 = MWLE

as ε < 1/24. Furthermore

sup
t :t3≥1

WLε(t) = 6ε < 5/6 = MWLE

and this is caused solely by budget surpluses.
The new club {1, 3} which appears when 2/3 + ε ≤ t3 < 1 serve the purpose of keeping the 

welfare loss below 5/6. However they produce an important side effect. Take, for example, the 
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club {1, 3} that forms when 1/3 − ε ≤ t1 < 1/3 + 2ε and 1/3 + 2ε ≤ t2 < 1/2. First note that 
this is a violation of wEF. Next, since agent 1 now has a lower cutoff, 1/3 − ε, his payment 
is lower in every club formed when his type increases and other two types remain constant. In 
particular when t1 > 2/3 + ε, note that budget is exactly balanced. This gives the rationale for 
budget surplus in the previous plot in the same area when 1/2 ≤ t3 < 2/3 + ε.

As a final note, equating 5/6 − ε = 2/3 + 4ε we find ε = 1/30, the value for ε which induces 
the lowest maximal welfare loss, 4/5, in the class {mε : 0 < ε < 1/24}.
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